PostgreSQL to Redshift

This page provides you with instructions on how to extract data from PostgreSQL and load it into Redshift. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is PostgreSQL?

PostgreSQL, also called Postgres, is an open source object-relational database management system that runs on all major operating systems. It's known for its stability and its ability to handle high volumes of transactions.

Getting data out of PostgreSQL

Most people retrieve data from relational databases by writing SQL queries. If you're just looking to export data in bulk, however, you can use the command-line tool pg_dump to export data from a PostgreSQL database as a CSV file or a script that you can run to restore the database on any PostgreSQL server.

Loading data into Redshift

Once you've identified all the columns you want to insert, you can use the CREATE TABLE statement in Reshift to set up a table to receive your data.

With the table built, you might think that the easiest way to migrate your data (especially if there isn't much of it) would be to build INSERT statements to add data to your Redshift table row by row. Think again! Redshift isn't optimized for inserting data one row at a time. If you have a high volume of data to be inserted, we suggest moving the data into Amazon S3 and then using the COPY command to load it into Redshift.

Keeping PostgreSQL data up to date

The script you have now should satisfy all your data needs for PostgreSQL – right? Not yet. How do you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow; if latency is important to you, it's not a viable option.

Instead, you can identify some key fields that your script can use to bookmark its progression through the data, and pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in PostgreSQL.

Other data warehouse options

Redshift is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Google BigQuery, PostgreSQL, or Snowflake, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To BigQuery, To Postgres, To Snowflake, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your PostgreSQL data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Redshift data warehouse.